All Hash Generator

What is Hash function?

A hash function is any function that can be used to map data of arbitrary size to data of fixed size. The values returned by a hash function are called hash values, hash codes, digests, or simply hashes. One use is a data structure called a hash table, widely used in computer software for rapid data lookup. Hash functions accelerate table or database lookup by detecting duplicated records in a large file. An example is finding similar stretches in DNA sequences. They are also useful in cryptography. A cryptographic hash function allows one to easily verify that some input data maps to a given hash value, but if the input data is unknown, it is deliberately difficult to reconstruct it (or equivalent alternatives) by knowing the stored hash value. This is used for assuring integrity of transmitted data, and is the building block for HMACs, which provide message authentication.

Hash functions are related to (and often confused with) checksums, check digits, fingerprints, lossy compression, randomization functions, error-correcting codes, and ciphers. Although these concepts overlap to some extent, each has its own uses and requirements and is designed and optimized differently. The HashKeeper database maintained by the American National Drug Intelligence Center, for instance, is more aptly described as a catalogue of file fingerprints than of hash values.

What is Hash table?

Hash functions are used in hash tables, to quickly locate a data record (e.g., a dictionary definition) given its search key (the headword). Specifically, the hash function is used to map the search key to a list; the index gives the place in the hash table where the corresponding record should be stored. Hash tables, also, are used to implement associative arrays and dynamic sets.

Hash table

A hash function that maps names to integers from 0 to 15. There is a collision between keys "John Smith" and "Sandra Dee"

Typically, the domain of a hash function (the set of possible keys) is larger than its range (the number of different table indices), and so it will map several different keys to the same index which could result in collisions. So then, each slot of a hash table is associated with (implicitly or explicitly) a set of records, rather than a single record. For this reason, each slot of a hash table is often called a bucket, and hash values are also called bucket listing or a bucket index.

Thus, the hash function only hints at the record's location. Still, in a half-full table, a good hash function will typically narrow the search down to only one or two entries.

People who write complete hash table implementations choose a specific hash function—such as a Jenkins hash or Zobrist hashing—and independently choose a hash-table collision resolution scheme—such as coalesced hashing, cuckoo hashing, or hopscotch hashing.

What is MD5?

The MD5 algorithm is a widely used hash function producing a 128-bit hash value. Although MD5 was initially designed to be used as a cryptographic hash function, it has been found to suffer from extensive vulnerabilities. It can still be used as a checksum to verify data integrity, but only against unintentional corruption.

Like most hash functions, MD5 is neither encryption nor encoding. It can be cracked by brute-force attack and suffers from extensive vulnerabilities as detailed in the security section below.

What is SHA-256?

The SHA (Secure Hash Algorithm) is one of a number of cryptographic hash functions. A cryptographic hash is like a signature for a text or a data file. SHA-256 algorithm generates an almost-unique, fixed size 256-bit (32-byte) hash. Hash is a one way function – it cannot be decrypted back. This makes it suitable for password validation, challenge hash authentication, anti-tamper, digital signatures.

SHA-256 is one of the successor hash functions to SHA-1, and is one of the strongest hash functions available.

With this online tool you can easily generate hashes.

What is SHA-512?

SHA-512 is the 512-bit component of the “SHA-2” data integrity check standard (a.k.a. “hash”). Like SHA-256, it is one of two unique algorithms that make up a SHA-2 hash, but SHA-512 is optimized for 64-bit calculations rather than 32-bit calculations.

What is RIPEMD?

RIPEMD (RACE Integrity Primitives Evaluation Message Digest) is a family of cryptographic hash functions developed in Leuven, Belgium, by Hans Dobbertin, Antoon Bosselaers and Bart Preneel at the COSIC research group at the Katholieke Universiteit Leuven, and first published in 1996. RIPEMD was based upon the design principles used in MD4, and is similar in performance to the more popular SHA-1.

RIPEMD-160 is an improved, 160-bit version of the original RIPEMD, and the most common version in the family. RIPEMD-160 was designed in the open academic community, in contrast to the NSA-designed SHA-1 and SHA-2 algorithms. On the other hand, RIPEMD-160 appears to be used somewhat less frequently than SHA-1, which may have caused it to be less scrutinized than SHA-1. RIPEMD-160 is not known to be constrained by any patents.

As well as 160-bit, there also exist 128-, 256- and 320-bit versions of this algorithm, called RIPEMD-128, RIPEMD-256, and RIPEMD-320, respectively. The 128-bit version was intended only as a drop-in replacement for the original RIPEMD, which was also 128-bit, and which had been found to have questionable security. The 256- and 320-bit versions diminish only the chance of accidental collision and don't have higher levels of security (against preimage attacks) as compared to, respectively, RIPEMD-128 and RIPEMD-160.

In August 2004, a collision was reported for the original RIPEMD. This does not apply to RIPEMD-160.

What is Whirlpool (cryptography)?

Whirlpool (sometimes styled WHIRLPOOL) is a cryptographic hash function. It was designed by Vincent Rijmen (co-creator of the Advanced Encryption Standard) and Paulo S. L. M. Barreto, who first described it in 2000.

The hash has been recommended by the NESSIE project. It has also been adopted by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) as part of the joint ISO/IEC 10118-3 international standard.

What is Tiger (cryptography)?

In cryptography, Tiger is a cryptographic hash function designed by Ross Anderson and Eli Biham in 1995 for efficiency on 64-bit platforms. The size of a Tiger hash value is 192 bits. Truncated versions (known as Tiger/128 and Tiger/160) can be used for compatibility with protocols assuming a particular hash size. Unlike the SHA-2 family, no distinguishing initialization values are defined; they are simply prefixes of the full Tiger/192 hash value.

Tiger2 is a variant where the message is padded by first appending a byte with the hexadecimal value of 0x80 as in MD4, MD5 and SHA, rather than with the hexadecimal value of 0x01 as in the case of Tiger. The two variants are otherwise identical.

What is Snefru (cryptography)?

Snefru is a cryptographic hash function invented by Ralph Merkle in 1990 while working at Xerox PARC. The function supports 128-bit and 256-bit output. It was named after the Egyptian Pharaoh Sneferu, continuing the tradition of the Khufu and Khafre block ciphers.

The original design of Snefru was shown to be insecure by Eli Biham and Adi Shamir who were able to use differential cryptanalysis to find hash collisions. The design was then modified by increasing the number of iterations of the main pass of the algorithm from two to eight. Although differential cryptanalysis can break the revised version with less complexity than brute force search (a certificational weakness), the attack requires 288.5 operations and is thus not currently feasible in practice.

What is GOST?

The GOST hash function, defined in the standards GOST R 34.11-94 and GOST 34.311-95 is a 256-bit cryptographic hash function. It was initially defined in the Russian national standard GOST R 34.11-94 Information Technology – Cryptographic Information Security – Hash Function. The equivalent standard used by other member-states of the CIS is GOST 34.311-95.

This function must not be confused with a different Streebog hash function, which is defined in the new revision of the standard GOST R 34.11-2012.

The GOST hash function is based on the GOST block cipher.

What is Adler-32?

Adler-32 is a checksum algorithm which was invented by Mark Adler in 1995,[1] and is a modification of the Fletcher checksum. Compared to a cyclic redundancy check of the same length, it trades reliability for speed (preferring the latter). Adler-32 is more reliable than Fletcher-16, and slightly less reliable than Fletcher-32.

What is CRC-32?

A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to raw data. Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents. On retrieval, the calculation is repeated and, in the event the check values do not match, corrective action can be taken against data corruption. CRCs can be used for error correction (see bitfilters).

CRCs are so called because the check (data verification) value is a redundancy (it expands the message without adding information) and the algorithm is based on cyclic codes. CRCs are popular because they are simple to implement in binary hardware, easy to analyze mathematically, and particularly good at detecting common errors caused by noise in transmission channels. Because the check value has a fixed length, the function that generates it is occasionally used as a hash function.

The CRC was invented by W. Wesley Peterson in 1961; the 32-bit CRC function of Ethernet and many other standards is the work of several researchers and was published in 1975.

What is FNV has function?

FNV (Fowler–Noll–Vo) is a non-cryptographic hash function created by Glenn Fowler, Landon Curt Noll, and Kiem-Phong Vo.

The basis of the FNV hash algorithm was taken from an idea sent as reviewer comments to the IEEE POSIX P1003.2 committee by Glenn Fowler and Phong Vo in 1991. In a subsequent ballot round, Landon Curt Noll improved on their algorithm. In an email message to Landon, they named it the Fowler/Noll/Vo or FNV hash.

The current versions are FNV-1 and FNV-1a, which supply a means of creating non-zero FNV offset basis. FNV currently comes in 32-, 64-, 128-, 256-, 512-, and 1024-bit flavors. For pure FNV implementations, this is determined solely by the availability of FNV primes for the desired bit length; however, the FNV webpage discusses methods of adapting one of the above versions to a smaller length that may or may not be a power of two.

What is JOAAT (Jenkins One-At-A-Time)?

The Jenkins hash functions are a collection of (non-cryptographic) hash functions for multi-byte keys.

They can be used also as checksums to detect accidental data corruption or detect identical records in a database.

Each of the 24 rows corresponds to a single bit in the 3-byte input key, and each of the 32 columns corresponds to a bit in the output hash. Colors are chosen by how well the input key bit affects the given output hash bit: a green square indicates good mixing behavior, a yellow square weak mixing behavior, and red would indicate no mixing. Only a few bits in the last byte of the input key are weakly mixed to a minority of bits in the output hash.

What is HAVAL?

HAVAL is a cryptographic hash function. Unlike MD5, but like most modern cryptographic hash functions, HAVAL can produce hashes of different lengths. HAVAL can produce hashes in lengths of 128 bits, 160 bits, 192 bits, 224 bits, and 256 bits. HAVAL also allows users to specify the number of rounds (3, 4, or 5) to be used to generate the hash.

HAVAL was invented by Yuliang Zheng, Josef Pieprzyk, and Jennifer Seberry in 1992.